# Macroeconomic attention and expected returns

Eugene Larsen-Hallock, Capital Fund Management Ken Teoh, International Monetary Fund\*

October 2024

<sup>\*</sup>The views expressed in this presentation are our own and do not necessarily represent the views of the IMF, its Executive Board, or IMF management.

#### Motivation

- Inattention to macroeconomic shocks proposed as a key mechanism for money non-neutrality and business cycle asymmetries.
   (Maćkowiak and Wiederholt, 2009, 2015; Song and Stern, 2024; Flynn and Sastry, 2024).
- Empirically, assessing the relevance of the mechanism is challenging as attention allocation is not directly observed.
- This paper: Can the cross-section of stock returns help us understand the relevance of firms' attention allocation?

## This paper

- Measures attention to macroeconomy using firm disclosures.
  - Large variation in macro-attention across firms.
  - Macroeconomic attention highly counter-cylical (Song and Stern, 2024; Flynn and Sastry, 2024).
- Higher macroeconomic attention correlates with significantly lower returns.
  - Average returns of highest attention decile stocks are 13.1% p.a lower than lowest decile stocks.
  - Not explained by known asset pricing factors and characteristics.
- Explain findings with simple model of macroeconomic attention and stock returns.
  - Higher macro-attention stocks have cash flows more exposed to aggregate risk relative to firm-specific risk.
  - Both aggregate and firm-specific risks are priced, but larger variation in firm-specific risk exposure drives the observed negative risk premium.

# This paper

- Measures attention to macroeconomy using firm disclosures.
  - Large variation in macro-attention across firms.
  - Macroeconomic attention highly counter-cylical (Song and Stern, 2024; Flynn and Sastry, 2024).
- Higher macroeconomic attention correlates with significantly lower returns.
  - Average returns of highest attention decile stocks are 13.1% p.a. lower than lowest decile stocks.
  - Not explained by known asset pricing factors and characteristics.
- Explain findings with simple model of macroeconomic attention and stock returns.
  - Higher macro-attention stocks have cash flows more exposed to aggregate risk relative to firm-specific risk.
  - Both aggregate and firm-specific risks are priced, but larger variation in firm-specific risk exposure drives the observed negative risk premium.

# This paper

- Measures attention to macroeconomy using firm disclosures.
  - Large variation in macro-attention across firms.
  - Macroeconomic attention highly counter-cylical (Song and Stern, 2024; Flynn and Sastry, 2024).
- Higher macroeconomic attention correlates with significantly lower returns.
  - Average returns of highest attention decile stocks are 13.1% p.a. lower than lowest decile stocks.
  - Not explained by known asset pricing factors and characteristics.
- Explain findings with simple model of macroeconomic attention and stock returns.
  - Higher macro-attention stocks have cash flows more exposed to aggregate risk relative to firm-specific risk.
  - Both aggregate and firm-specific risks are priced, but larger variation in firm-specific risk exposure drives the observed negative risk premium.

#### Data

- Transcripts of 142,751 earnings calls from 2002-Q1 to 2020-Q1.
  - Restrict to US public-listed firms, excluding financial stocks.
- Collection of 44,835 Reuters news articles about the macroeconomy or company news.
  - Google Search to rank articles by relevance each week: "site: reuters.com" + "economy" or "[company name]" + "after: [start date]" + "before: [end date]".
  - Quality control: Select articles with "Economy" or "Company News" topic codes, keeping sentences with macro and firm-specific keywords.
- Firm level returns and balance sheet data from CRSP/Compustat.

# Measuring attention to the macroeconomy

- Sentence classification:
  - Use word embeddings classification model to predict relevance score
     m<sub>s</sub> for each sentence s.
  - $m_s = h(w_{s,1}, \dots, w_{s,V})$  where  $w_{s,V}$  are the embeddings of word v in sentence s.
  - m<sub>s</sub> ∈ [0, 1] is the probability that sentence s is macroeconomy-relevant.
- Macro Attention measure:
  - Macro attention of firm *i* in quarter *t* is the share of sentences classified as macroeconomy-relevant:

$$extit{MacroAttn}_{it} = rac{1}{|\mathcal{S}_{it}|} \sum_{s \in \mathcal{S}_{it}} 1\{m_s \geq c\}$$

where c is the relevance threshold.

# Model performance comparison

• Single layer embeddings model achieves highest overall accuracy and f1-scores.

| Representation         | Hidden Layers | Accuracy | Recall | Precision | F1 Score |
|------------------------|---------------|----------|--------|-----------|----------|
| Learned Embeddings     | 0             | 0.958    | 0.834  | 0.903     | 0.867    |
| Learned Embeddings     | 1             | 0.958    | 0.846  | 0.890     | 0.868    |
| Binary Count           | 1             | 0.951    | 0.807  | 0.884     | 0.843    |
| Binary Count           | 0             | 0.951    | 0.798  | 0.890     | 0.842    |
| Term Frequency         | 1             | 0.946    | 0.855  | 0.820     | 0.837    |
| Term Frequency         | 0             | 0.946    | 0.855  | 0.820     | 0.837    |
| Pre-trained Embeddings | 1             | 0.896    | 0.503  | 0.784     | 0.613    |
| Pre-trained Embeddings | 0             | 0.896    | 0.497  | 0.788     | 0.609    |
| TF-IDF                 | 0             | 0.891    | 0.340  | 0.982     | 0.505    |
| TF-IDF                 | 1             | 0.889    | 0.327  | 0.983     | 0.490    |

# Validation: keywords of classified earnings call sentences

| Macro    |          |  | Non-macro |           |  |
|----------|----------|--|-----------|-----------|--|
| inflat   | optimist |  | morn      | launch    |  |
| economi  | foreign  |  | acquisit  | excit     |  |
| reform   | curv     |  | patient   | client    |  |
| budget   | repeat   |  | ebitda    | store     |  |
| recoveri | wait     |  | technolog | deal      |  |
| read     | unchang  |  | brand     | sharehold |  |
| pace     | gdp      |  | platform  | strateg   |  |
| labor    | moder    |  | execut    | integr    |  |
| export   | germani  |  | digit     | capabl    |  |
| hous     | headwind |  | everyon   | offic     |  |

**Table 1:** Top 20 most common words for each class label. Words found in both class labels removed.

#### Macroeconomic attention over time

 Average earnings call spends 9 percent of the time discussing macro-relevant topics. Attention to the macroeconomy is countercyclical and persistent.



#### Variation in macroeconomic attention across firms

• Large cross-sectional variation in *MacroAttn*<sub>it</sub>, even after controlling for time-and-sector FE and firm FE.



|               | Time FE | Sector FE | Sector x time FE | Firm FE |
|---------------|---------|-----------|------------------|---------|
| R-squared (%) | 3.4     | 27.2      | 38.4             | 48.3    |

#### Macro-attention and firm characteristics

 Macro-attention higher when firms are riskier, larger, have lower book-to-market, and negative earnings surprise.

|                       | (1)            | (2)            | (3)            | (4)            | (5)            |
|-----------------------|----------------|----------------|----------------|----------------|----------------|
|                       | log(MacroAttn) | log(MacroAttn) | log(MacroAttn) | log(MacroAttn) | log(MacroAttn) |
| Firm risk             | 0.0164***      |                |                |                |                |
|                       | (9.32)         |                |                |                |                |
| log(Asset)            |                | 0.0318***      |                |                |                |
|                       |                | (9.60)         |                |                |                |
| Leverage              |                |                | -0.0143        |                |                |
|                       |                |                | (-1.10)        |                |                |
| Book-to-market        |                |                |                | -0.0108***     |                |
|                       |                |                |                | (-4.66)        |                |
| Earnings Surprise < 0 |                |                |                |                | 0.00774***     |
|                       |                |                |                |                | (2.65)         |
| Firm & Time FE        | ✓              | ✓              | ✓              | ✓              | ✓              |
| $R^2$                 | 0.51           | 0.51           | 0.51           | 0.51           | 0.51           |
| N                     | 106514         | 106514         | 106514         | 106514         | 106514         |

t statistics in parentheses

<sup>\*</sup> p<0.10, \*\* p<0.05, \*\*\* p<0.01

### Macro-attention and expected returns

 High macro-attention firms earn lower returns relative to low macro-attention firms, with a sizable difference in returns.



Figure 1: Average monthly returns of macroeconomic attention sorted portfolios over the sample period. The sample period is from January 2005 to December 2019.

## Cumulative portfolio returns over time

 Returns to long-short portfolio are large relative to known asset pricing factors, accrue even in non-recession periods.



## Controls for asset pricing factors and characteristics

 Macro-attention portfolio returns not fully explained by asset pricing factors.

|                 | CAPM                 | FF-3                 | Carhart-4            | FF-5                 | FF-3 + FVIX          |
|-----------------|----------------------|----------------------|----------------------|----------------------|----------------------|
| $\alpha_{10-1}$ | -1.084***<br>(-5.59) | -0.995***<br>(-6.06) | -1.085***<br>(-4.08) | -1.241***<br>(-7.68) | -0.984***<br>(-5.80) |
| R-squared       | 0.013                | 0.269                | 0.270                | 0.384                | 0.300                |

 Portfolio alphas persist in portfolios double-sorted on asset pricing factors and characteristics.

|                 | Mkt-Beta             | Size                 | Book-to-Mkt          | Agg Vol              | Idio Vol             | Industry            |
|-----------------|----------------------|----------------------|----------------------|----------------------|----------------------|---------------------|
| $\alpha_{10-1}$ | -0.673***<br>(-4.52) | -0.753***<br>(-4.53) | -0.846***<br>(-5.49) | -0.659***<br>(-4.49) | -0.724***<br>(-4.67) | -0.422**<br>(-2.48) |
| R-squared       | 0.283                | 0.307                | 0.254                | 0.300                | 0.322                | 0.117               |

# Conceptual framework

• Firm i's dividend growth follows process

$$\Delta d_{i,t+1} = \eta_{t+1} + \nu_{it+1}$$

where  $\eta_{t+1} \sim N(0, \sigma_{\eta}^2)$  are aggregate shocks, and  $\nu_{it+1} \sim N(0, \varphi_i \sigma_{\nu}^2)$  are firm-specific shocks.

 Analyst covering firm i receives signals of macro and firm-specific shocks from earnings call.

$$s_{it}^{\eta} = \eta_{t+1} + \epsilon_{it}^{\eta}$$
  
 $s_{it}^{\nu} = \nu_{it+1} + \epsilon_{it}^{\nu}$ 

where  $\epsilon_{it}^{\eta} \sim N(0, \sigma_{\epsilon, \eta}^2)$  and  $\epsilon_{it}^{\eta} \sim N(0, \sigma_{\epsilon, \nu}^2)$  are signal noises.

# Analyst's forecasting problem

 Analyst minimize forecast errors by choosing how much attention to pay to each signal

$$\max_{\sigma_{\epsilon,\eta}^2,\sigma_{\epsilon,\nu}^2} - E_t \left[ (\Delta d_{it+1} - \Delta \hat{d}_{it+1})^2 \right]$$

subject to limitation in information processing capacity

$$\frac{1}{2}\log_2\left(1+\frac{\sigma_\eta^2}{\sigma_{\epsilon,\eta}^2}\right)+\frac{1}{2}\log_2\left(1+\frac{\varphi_i\sigma_\nu^2}{\sigma_{\epsilon,\nu}^2}\right)\leq \kappa$$

The optimal attention to the signal of macro shocks given by:

$$extit{MacroAttention}_{it} = rac{1}{2} + rac{1}{4\kappa} \log_2(rac{\sigma_\eta^2}{arphi_i \sigma_
u^2})$$

 Prediction 1: MacroAttention<sub>it</sub> increasing in variance of macro-shocks, decreasing in variance of firm-specific shocks.

### Return decomposition

• Following Campbell (1991), the unexpected log return of asset *i* can be decomposed as

$$r_{i,t+1} - E_t r_{i,t+1} = N_{i,t+1}^{CF} - N_{i,t+1}^{DR}$$

Given dividend growth process, cash flow news is given by

$$N_{CF,t+1}^{i} = \eta_{t+1} + \nu_{i,t+1}$$

where 
$$\eta_{t+1} \sim \textit{N}(\textbf{0}, \sigma_{\eta}^2)$$
 and  $\nu_{i,t+1} \sim \textit{N}(\textbf{0}, \phi_i \sigma_{\nu}^2)$ .

• Assume discount rate news uncorrelated with cash flow news, with similar variance  $\sigma_\omega^2$  and correlation  $\rho$  across all firms.

## Risk premium

For a representative investor with Epstein-Zin preferences and who
holds the market portfolio, the risk premium of stock i is given by

$$\mathit{rp}_{i} = \gamma \sigma_{\mathit{m}}^{2} \beta_{\mathit{i},\mathit{m}}^{\mathit{CF},\mathit{macro}} + \gamma \sigma_{\mathit{m}}^{2} \beta_{\mathit{i},\mathit{m}}^{\mathit{CF},\mathit{firm}} + \sigma_{\mathit{m}}^{2} \beta_{\mathit{i},\mathit{m}}^{\mathit{DR}}$$

where cash-flow and discount-rate risk loadings given by:

$$\begin{split} \beta_{i,m}^{\textit{CF},\textit{macro}} &= \frac{\sigma_{\eta}^2}{\sigma_m^2}, \\ \beta_{i,m}^{\textit{CF},\textit{firm}} &= \frac{1}{M} \frac{\varphi_i \sigma_{\nu}^2}{\sigma_m^2} \\ \beta_{i,m}^{\textit{DR}} &= \frac{\sigma_{\omega}^2}{\sigma_m^2} \Big( 1 + \frac{\rho(M-1)}{M} \Big) \end{split}$$

• **Prediction 2:** Higher  $MacroAttention_{it}$  associated with lower firm-specific cash flow betas  $\beta_{i,m}^{CF,firm}$ 

## Bringing model to data

- Estimate cash flow and discount rate news using IBES earnings forecasts (De Lao and Myers, 2021).
- Decompose cash flow news into aggregate/firm-specific factors via factor model:

$$\min_{\Psi,U} \sum_{i,t} (x_{it} - \psi_i u_t')^2 + \gamma \left( \|\Psi\|_F^2 + \|U\|_F^2 \right)$$

- Variance from aggregate factors:  $Var(\psi_i u_t)$
- Variance from firm-specific factors:  $Var(e_i) = Var(x_{it} \psi_i u_t')$

#### Macro Attention and Variance of Cash Flow Risk

 Prediction 1: Analyst attention to the macroeconomy increasing in share of cash flow risk explained by macro shocks.

$$MacroAttention_{it} \propto \log(\sigma_{\eta}^2) - \log(\varphi_i \sigma_{\nu}^2)$$



# Macro vs Firm-specific Cash Flow Betas

 Prediction 2: Higher macro-attention associated with lower firm-specific cash flow betas.



#### Conclusion

- Macro-attention allocation has implications for the cross-section of stock returns:
  - Macroeconomic attention varies significantly across firms
  - Firms with higher macro-attention tend to earn lower returns.
  - Difference in returns not explained by known asset pricing factors such as size, value, or momentum.
- Simple model of attention allocation consistent with empirical findings:
  - Firms with higher macro-attention load more on aggregate cash flow risk, and less on firm-specific risk.
  - Empirically, larger variation in firm—specific risk exposure across macro-attention stocks, explaining negative risk premium.

# Processing sentence with embeddings

- Step 1: Sentence Tokenization
  - The sentence is split into words: ["The", "economic", "outlook", "is", "uncertain"]
- Step 2: Word Embeddings
  - Each word is converted into a 300-dimensional vector using an embedding layer.
- Step 3: Neural Network
  - Global Max Pooling: Summarizes the sequence into a single vector.
  - Dense Layer: Further reduce vector into 64-dimensional vector, summarizing high level features.
  - Sigmoid Layer: Outputs a probability indicating the sentence's macroeconomic relevance
- Step 4: Output
  - Model outputs probability score (e.g., 0.87), indicating how macroeconomy-relevant the sentence is.



## Fama-MacBeth (1973) regressions Main

**Table 2:** Sample period is from January 2005 to December 2019. t-statistics incorporate Newey-West correction with four lags.

|                          | (1)       | (2)       | (3)       | (4)       | (5)       | (6)       | (7)       | (8)       | (9)       |
|--------------------------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|
| MacroAttn                | -0.649*** | -0.585*** | -0.635*** | -0.630*** | -0.613*** | -0.805*** | -0.784*** | -0.596*** | -0.295**  |
|                          | (-5.01)   | (-4.45)   | (-4.92)   | (-4.84)   | (-4.44)   | (-6.28)   | (-5.70)   | (-4.51)   | (-2.32)   |
| $\beta(MKT)$             | -0.346*   |           |           |           |           |           |           |           | -0.340*   |
|                          | (-1.74)   |           |           |           |           |           |           |           | (-1.87)   |
| $\beta(SMB)$             |           | 0.0536    |           |           |           |           |           |           | -0.106    |
|                          |           | (0.86)    |           |           |           |           |           |           | (-1.26)   |
| $\beta(HML)$             |           |           | 0.159*    |           |           |           |           |           | 0.221**   |
|                          |           |           | (1.96)    |           |           |           |           |           | (2.31)    |
| $\beta(VIX)$             |           |           |           | 10.74     |           |           |           |           | 50.34*    |
|                          |           |           |           | (0.33)    |           |           |           |           | (1.71)    |
| Size                     |           |           |           |           | -0.373*** |           |           |           | -0.133*** |
|                          |           |           |           |           | (-6.21)   |           |           |           | (-3.46)   |
| Book-to-market           |           |           |           |           |           | 0.127     |           |           | -0.111    |
|                          |           |           |           |           |           | (1.19)    |           |           | (-1.58)   |
| Lagged returns (12 mths) |           |           |           |           |           |           | -0.125    |           | 0.416*    |
|                          |           |           |           |           |           |           | (-0.43)   |           | (1.95)    |
| Idio vol                 |           |           |           |           |           |           |           | 43.93***  | 7.451     |
|                          |           |           |           |           |           |           |           | (4.29)    | (1.55)    |
| Observations             | 323424    | 323398    | 323523    | 323661    | 323900    | 311784    | 321047    | 323401    | 284630    |
| $R^2$                    | 0.0206    | 0.0180    | 0.0186    | 0.0142    | 0.0150    | 0.0126    | 0.0154    | 0.0166    | 0.0794    |

t statistics in parentheses

<sup>\*</sup> p<0.10, \*\* p<0.05, \*\*\* p<0.01

# Fama-MacBeth (1973) regressions Main

**Table 3:** Sample period is from January 2005 to December 2019. t-statistics incorporate Newey-West correction with four lags.

|                              | (1)      |         | (2)      |         |
|------------------------------|----------|---------|----------|---------|
| MacroAttn                    | -0.17*** | (-3.96) | -0.13*** | (-3.77) |
| $\beta(MKT)$                 | -0.11    | (-1.19) | -0.12    | (-1.39) |
| $\beta(SMB)$                 | -0.19**  | (-2.65) | -0.20**  | (-2.89) |
| $\beta(HML)$                 | 0.13     | (1.54)  | 0.10     | (1.28)  |
| $\beta(VIX)$                 | -0.04    | (-0.72) | -0.04    | (-0.73) |
| Size                         | -0.44*** | (-7.80) | -0.46*** | (-7.87) |
| Book-to-market               | -0.08    | (-1.71) | -0.20*** | (-3.76) |
| Lagged returns (12 mths)     | 0.04     | (0.65)  | 0.03     | (0.60)  |
| Idio vol                     | 0.25***  | (4.16)  | 0.18***  | (3.94)  |
| Issuances (36 mths)          |          |         | -0.03    | (-0.95) |
| Accruals                     |          |         | 0.14***  | (4.82)  |
| Return on asset              |          |         | -0.28*** | (-5.23) |
| Asset growth                 |          |         | -0.03    | (-1.19) |
| Lagged returns (12 mths)     |          |         | 0.08*    | (2.21)  |
| Issuances (12 mths)          |          |         | -0.02    | (-0.52) |
| Turnover                     |          |         | 0.07     | (1.29)  |
| Sale-to-price                |          |         | 0.10*    | (2.05)  |
| Net debt-to-price            |          |         | 0.06     | (1.55)  |
| Dividend yield               |          |         | -0.02    | (-0.43) |
| Observations                 | 328852   |         | 328852   |         |
| $R^2$                        | 0.0610   |         | 0.0805   |         |
| a caratrater to consulations |          |         |          |         |

t statistics in parentheses

<sup>\*</sup> p < 0.05, \*\* p < 0.01, \*\*\* p < 0.001

#### References

- Campbell, J. Y. (1991): "A Variance Decomposition for Stock Returns," The Economic Journal. 101, 157.
- Flynn, J. P. and K. Sastry (2024): "Attention Cycles," SSRN Electronic Journal.
- Maćkowiak, B. and M. Wiederholt (2009): "Optimal Sticky Prices under Rational Inattention," *American Economic Review*, 99, 769–803.
- ——— (2015): "Business Cycle Dynamics under Rational Inattention," *The Review of Economic Studies*, 82, 1502–1532.
- Song, W. and S. Stern (2024): "Firm Inattention and the Efficacy of Monetary Policy: A Text-Based Approach," SSRN Electronic Journal.